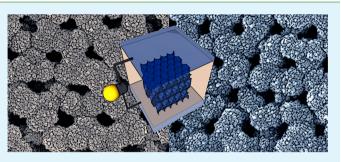
ACS APPLIED MATERIALS & INTERFACES


Enhanced Photovoltaic Properties of Nb₂O₅-Coated TiO₂ 3D Ordered Porous Electrodes in Dye-Sensitized Solar Cells

Hye-Na Kim and Jun Hyuk Moon*

Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, South Korea

Supporting Information

ABSTRACT: This paper describes the use of Nb₂O₅-coated TiO₂ 3D ordered porous electrodes in dye-sensitized solar cells. We employed bilayer inverse opal structures as a backbone of 3D porous structures, and the number of Nb₂O₅ coatings was controlled, determining the concentration of Nb₂O₅ coating. XPS measurements confirmed the formation of Nb₂O₅. The uniformity of the Nb₂O₅ coating was characterized by elemental mapping using SEM and TEM measurements. Photovoltaic measurement on dye-sensitized solar cells (DSSCs) that incorporated Nb₂O₅/TiO₂ inverse opal electrodes yielded a maximum efficiency of 7.23% for a

3.3 wt % Nb₂O₅ coating on a TiO₂ IO structure. The Nb₂O₅ significantly increased the short-circuit current density (J_{SC}). Electrochemical impedance spectroscopy was used to measure the J_{SC} , revealing an enhanced electron injection upon deposition of the Nb₂O₅ coating.

KEYWORDS: photoelectrodes, inverse opals, metal oxide coating, dye-sensitized solar cells, niobium oxide

INTRODUCTION

Dye-sensitized solar cells (DSSCs) are promising alternatives to conventional silicon-based solar cells because of their low manufacturing costs and relatively high energy conversion efficiencies.¹ In DSSC components, the TiO₂ electrode layer is a key part because this layer performs many functions: it acts as a substrate on which the dye molecules adsorb, it transfers the charges, and it serves as a diffusion pathway for redox ions. The engineering of TiO₂ electrodes with regard to characteristics such as nanostructure, crystalline morphology, and surface properties is therefore a crucial aspect of efforts to enhance the photoconversion efficiency. There have been many efforts to engineer the microstructure of TiO₂ electrodes. It is thought that control over the meso-to-macroscale morphology of an oxide semiconductor film could increase the efficiency of DSSCs.^{2,3} Moreover, this could be required for the application of highly viscous electrolytes in solid-state DSSCs. Recently, ordered morphologies, such as nanotube arrays,^{4–7} ordered mesoporous structures,^{8,9} and inverse opals^{10,11} have been suggested and widely studied.

Inverse opal (IO) electrodes containing three-dimensional bicontinuous porous structures and pores recently have raised interest due to the following reasons.^{11–15} (1) As with other ordered morphologies, the 3D connected structures of IO coatings provide more direct transport route for electrons. (2) The pore size can be widely tuned by varying the colloidal crystal template particle size. Fully connected pores provide superior penetration of hole conductors, particularly in solid-state DSSCs. (3) Colloidal templating approaches allow the facile engineering of multilayered structures. For example, the

electron mobility and the charge recombination properties were much enhanced by using a strategy in which TiO₂/Al/ZnO TiO₂/SnO₂ inverse opal-like core—shell structure were prepared. These coatings yielded large increases in the photovoltage of 15% over a state-of-the—art DSSC and provided higher efficiencies of 5.8% by using Z907 and I₃⁻/I⁻ electrolyte.¹² However, IO-based electrodes revealed a much lower short-circuit current density ($J_{\rm SC}$), in the range of 10–12 mA/cm² compared to the $J_{\rm SC}$ measured for state-of-the-art DSSCs.¹⁶ Thus, the $J_{\rm SC}$ of IO-based electrodes must be enhanced.

The $J_{\rm SC}$ values of DSSCs with TiO₂ electrodes are determined by three factors, the light harvesting efficiency, the electron injection efficiency, and the electron collection efficiency. The light harvesting efficiency may be increased by increasing light absorption through dye loading or scattering. Previously, our group reported the preparation of bilayer TiO₂ inverse opals in which the inverse opal surface was covered by rutile TiO₂ nanoparticles that increased the specific area of the electrode for dye loading, thereby enhancing the photocurrent density. These electrodes yielded high efficiencies of 4.6% by using unpurified N719 and I_3^-/I^- electrolyte.¹⁴ Meanwhile, the injection and collection efficiencies may be increased by modulating the surface states of the TiO₂ electrodes.² Previous studies have examined the application of various metal oxide shells such as SnO₂,¹⁷ ZrO₂,¹⁸ Nb₂O₅,¹⁹⁻²² Al₂O₃,^{18,23,24} and

```
Received:July 25, 2012Accepted:November 7, 2012Published:November 15, 2012
```

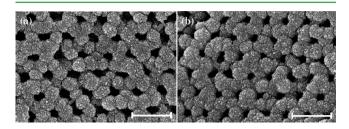
ACS Publications © 2012 American Chemical Society

ACS Applied Materials & Interfaces

 $ZnO^{25,26}$ to TiO₂ electrodes. Mostly, the coating of these materials layer forms an energy barrier that decreases the electron recombination losses, shifts the conduction band downward that increases the electron injection, or enhances the injection efficiency. This results in an increase in the I_{SC} and often accompanies the increase in open-circuit voltage $(V_{\rm OC})$ as well. Here, we employed a Nb2O5 coating on TiO2 IO structures for use in DSSCs. Nb₂O₅ is such a promising metal oxide because it supports good N719 dye loading because of its basic character and its conduction band level is 100 meV higher than that of TiO2.²² In measuring the photovoltaic performances, the $J_{\rm SC}$ largely increased by up to 60% from 10.45 to 16.73 mA/cm^2 , therefore, the photon-to-electric conversion efficiency increased by 46% from 4.95% to 7.23% (using nonpurified N719). It should be noted that this remarkable improvement was superior to previous results employing Nb_2O_5 coatings on nanocrystalline TiO_2 electrodes^{21,27} and TiO_2 nanorods.¹⁹

EXPERIMENTAL SECTION

Fabrication of IO TiO₂ Electrodes. The FTO substrate was washed thoroughly and a thin layer of TiO_2 was deposited as a blocking layer, as reported elsewhere. A layer of monodisperse polystyrene (PS) particles 750 nm in diameter was coated onto the FTO substrates and assembled during the evaporation of water. TiO_2 nanoparticles with an average size of 15 nm (NanoAmor Inc.) were dispersed in water and applied to the PS particle layer, into which they infiltrated. The PS-TiO₂ composite film was calcined in air at 500 °C for 2 h, leaving behind an inverse opal structure. The sample was posttreated in an aqueous 0.3 M TiCl₄ solution to enhance the surface roughness with a coating of rutile TiO₂ nanoparticles. In this work, the post-treated inverse opal will be referred to as IO TiO₂.


 Nb_2O_5 Coating on the IO TiO₂ Electrodes. The Nb_2O_5 precursor solution was prepared from a 0.02 M $NbCl_5$ (Sigma-Aldrich) solution in anhydrous ethanol. The solution was dropped onto the IO TiO₂ layer and spin-coated to remove residual precursor solution. The total Nb_2O_5 coating thickness was modulated by the number of coatings applied. Finally, the substrate was sintered at 500 °C for 30 min to complete the conversion into a crystallized Nb_2O_5 layer.

Assembly of the DSSCs. The IO TiO_2 layer was dipped for 20 h in a dye solution containing 0.5 mM N719 (Dyesol) dye. Subsequently, an active area of the TiO_2 electrode was formed by scraping. The surface areas were 9 - 10 mm². The counter electrode was prepared by coating a 0.7 mM H₂PtCl₆ solution in anhydrous ethanol onto the FTO substrate. After then, the TiO₂ electrode was assembled with the counter electrode, and the gap between the two electrodes was fixed using a 60 μ m thick polymeric film (Surlyn, DuPont). The, the electrolyte solution was injected into the gap. The electrolyte solution contained 0.05 M LiI (Sigma-Aldrich), 0.1 M guanidine thiocyanate (GSCN) (Wako), 0.03 M I₂ (Yakuri), 0.5 M 4-tert-butylpyridine (Aldrich), and 0.7 M 1-butyl-3-methylimidazolium iodide (BMII) (Sigma-Aldrich) in a solution containing acetonitrile (Aldrich) and valeronitrile (85:15 v/v).

Characterization. The surface morphologies of the inverse opals and the Nb₂O₅-coated TiO₂ inverse opals were investigated using scanning electron microscopy (SEM, Carl Zeiss). The atomic concentrations of Nb₂O₅ were measured by energy dispersive X-ray spectroscopy (EDX) in conjunction with the SEM measurements. Elemental mapping of the Nb₂O₅-coated TiO₂ IO structure was performed using transmission electron microscopy (TEM, JEOL). The binding energy of the Nb₂O₅ coating surface was measured by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific). The photocurrents and voltages of the DSSCs were measured using a Source Meter (Keithley Instruments) under simulated solar light produced using a 150 W Xe lamp (Peccell) and AM 1.5G filters without masking. The intensity was adjusted using a Si reference cell (BS-520, Bunko-Keiki) to a power density of 100 mW cm⁻². The electrochemical impedance spectra were measured using a potentiostat (Versastat, AMETEK). The frequency range explored in the impedance measurements was 1×10^5 to 0.5 Hz.

RESULTS AND DISCUSSION

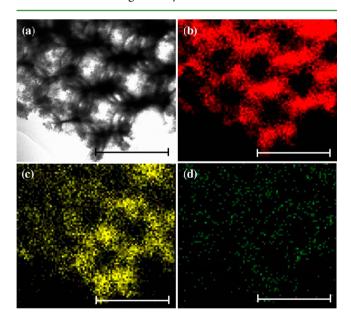

Figure 1 shows SEM images of the IO TiO_2 without Nb_2O_5 and Nb_2O_5 -coated IO TiO_2 . The IO TiO_2 was prepared by using PS

Figure 1. SEM images of the TiO₂ inverse opal structures of (a) bare IO TiO₂ and (b) 3.3 wt %-Nb₂O₅ IO TiO₂. (Scale bar: 1 μ m).

colloidal crystal templates (see Figure S1a in the Supporting Information). The Nb₂O₅ coating was characterized by XPS measurements, which confirmed the chemical structure. An extended post-treatment of TiCl₄ precursor solution was applied to increase the surface area of the inverse opal structure (see Figure S1b in the Supporting Information) by growing TiO₂ nanoparticles (15–20 nm sized), as reported elsewhere.¹⁴ The inverse opal possessed ordered pores around 250 nm in diameter, as shown in Figure 1a. Figure 1b shows that the Nb₂O₅ layer coating was not visible in the SEM images because of the thinness of the layer.

The Nb₂O₅ coating layer was prepared from a 0.02 M precursor solution. Lower solution concentrations yielded thin nonreproducible coatings that were nearly unobservable under EDX measurements (20 kV). Figure 2 shows TEM images of the IO TiO₂ structures prepared from 3.3 wt %-Nb₂O₅ IO TiO₂ and the TEM elemental mappings. The results show that the Nb atoms were homogeneously coated onto the IO structures.

Figure 2. (a) TEM image of inverse opal structures of 3.3 wt %-Nb₂O₅ IO TiO₂ and the elemental mapping for (b) Ti, (c) O, and (d) Nb atoms (scale bar: 1 μ m).

Electrodes were prepared with 1 and 3 coatings, yielding atomic wt % Nb values of 3.3 and 4.0, respectively (see Table 1S in the Supporting Information). The signature of Nb atoms in the EDX analysis did not guarantee the formation of Nb_2O_5 ; therefore, XPS measurements were collected to verify that the Nb atoms were present as Nb_2O_5 and not as other oxidized forms of Nb, such as NbO or NbO₂.

Figure 3 shows the XPS spectrum for the Nb precursorcoated IO TiO_2 electrodes. The highly oxophilic niobium can

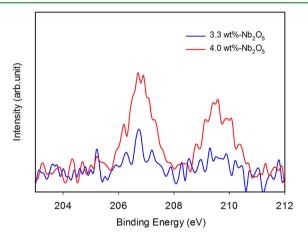
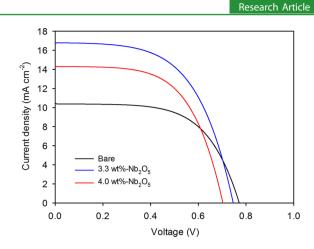
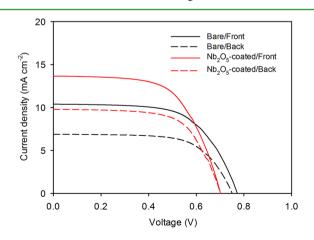



Figure 3. XPS investigation for the surface of TiO_2 electrode. Nb 3d spectra of Nb_2O_5 -coated IO TiO_2 electrodes, for different atomic %.

produce niobium oxide in the forms of NbO, NbO₂, or Nb₂O₅ under an oxygen environment, rather than remaining as metallic Nb. The XPS spectral peaks correspond to the binding energies of the niobium oxide $3d_{3/2}$ and $3d_{5/2}$ electrons, which can be used to differentiate the oxides: 207 and 204 eV indicate NbO, 208 and 205 eV indicate NbO₂, and 210 and 208 eV indicate Nb₂O₅.²⁸ The major peaks were positioned at 207 and 210 eV, confirming the presence of Nb₂O₅. As the coating thickness increased, the peak intensity increased, as measured by EDX analysis.

The performances of the Nb₂O₅-coated IO TiO₂ electrodes were evaluated in DSSCs by sensitizing the electrodes in a 0.5 mM N719 dye solution, then assembling the electrodes with a Pt-coated counter electrode. The interelectrode gap was filled with a liquid electrolyte. The current–voltage (I-V) characteristics of the DSSCs prepared with electrodes coated with various wt% Nb₂O₅ were measured under 100 mW cm⁻² AM 1.5 illumination. Figure 4 shows the J-V curves for DSSC cells containing untreated IO TiO₂ and Nb₂O₅-coated IO TiO₂ electrodes coated with various atomic wt% Nb2O5. Table 1 lists the J-V parameters extracted from the J-V curves, including the J_{SC} , V_{OC} , FF, and the overall conversion efficiency (η) , calculated according to $J_{SC} \times V_{OC} \times FF/(100 \text{ mW cm}^{-2})$. The J_{SC} of the 3.3 wt %-Nb₂O₅ IO TiO₂ (16.73 mA cm⁻²) was 60% higher than the J_{SC} of the untreated IO TiO₂ (10.45 mA cm⁻²). This enhancement led to a 46% improvement in the conversion efficiency, which reached 7.23%. It should be noted that an efficiency of 7.23% is the highest efficiency yet achieved using inverse opal-type electrodes. We compared our maximum efficiency with the efficiencies of DSSCs containing conventional nanocrystalline TiO2 electrodes of the same film thickness, which were prepared under the same experimental conditions as those used here (see Figure S2 in the Supporting Information). We obtained a 7.5% efficiency for these DSSCs,

Figure 4. The current–density (J-V) curves for DSSC cells containing untreated IO TiO₂ and Nb₂O₅-coated IO TiO₂ electrodes, for different atomic %.


Table 1. Photovoltaic Parameters for DSSC cells Fabricated with Untreated IO TiO_2 and Nb_2O_5 -Coated IO TiO_2 Electrodes, For Different Atomic % Tested under AM 1.5G 100 mW cm⁻²

atomic wt % of coated Nb ₂ O ₅	$J_{\rm sc} \left({ m mA} \atop { m cm}^{-2} ight)$	$\begin{pmatrix} V_{ m oc} \\ (V) \end{pmatrix}$	FF	η (%)	$R_{\rm rec}(\Omega)$	C_{μ} (mF)
untreated	10.45	0.77	0.61	4.95	139.1	0.35
3.3	16.73	0.75	0.58	7.23	89.5	0.45
4.0	14.37	0.71	0.60	6.08	96.0	0.37

which was comparable to the efficiency of our maximum efficiency.

Here, the increase in $J_{\rm SC}$ (by 60%) observed in the IO TiO₂ electrodes was more dramatic than the average enhancements in $J_{\rm SC}$ reported previously. Previous studies of the Nb-doped nanocrystalline TiO₂ and TiO₂ electrodes reported $J_{\rm SC}$ enhancements of up to 50% relative to untreated electrodes.^{19,21,27} This enhancement may be attributed to the relative uniformity of the Nb₂O₅ coating through the fully connected pores in the IO structure. Coatings with other morphologies presented nonuniform pore networks or small pore sizes.

The J-V graphs obtained under front-side or back-sided illumination conditions were compared, as shown in Figure 5. Front-side and back-side illumination generated more electrons,

Figure 5. The current-density (J-V) curves for DSSC cells containing untreated IO TiO₂ and Nb₂O₅ IO TiO₂ in front-sided illumination and back-sided illumination condition.

ACS Applied Materials & Interfaces

respectively, near and far from the electron collecting substrate. The electrons generated under back-side illumination (through the Pt-coated counter electrode) experienced a large number of trapping/detrapping events (trap-limited transport), which delayed the electron transport time and increased the charge recombination rate. In front-side illumination, electrons near the collecting substrate increased the conductivity of TiO_{24} which facilitated rapid trap-free transport.²⁹ Thus, the relative values of ISC under back-side and front-side illumination provided qualitative information about the electron recombination and transport properties of TiO₂ electrodes. A comparison of DSSCs prepared with untreated IO TiO₂ electrodes or Nb2O5-coated IO TiO2 electrodes, which displayed comparable J_{SC} values, showed that the back-tofront-side illumination J_{SC} ratios were 34% for the untreated IO TiO₂ electrodes and 28% for the Nb₂O₅-coated IO TiO₂ electrodes. The Nb2O5 coating clearly suppressed the reduction in *I*_{SC} under back-side illumination, suggesting that the coating reduced the recombination reaction or simply increased the conductivity of the TiO2 electrodes due to more injected electrons.

We further investigated the dramatic increase in J_{SC} for DSSCs prepared with increasing Nb₂O₅ in the Nb₂O₅-coated electrodes by comparing the 3.3 wt %-Nb₂O₅ electrode to the uncoated sample. Electrochemical impedance spectroscopy (EIS) was used to characterize the electron transport in the Nb₂O₅-coated IO TiO₂ electrodes by comparison with the untreated IO TiO₂ electrode, as shown in Figure 6. In Figure 6,

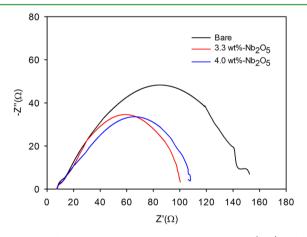


Figure 6. Electrochemical impedance spectroscopy (EIS) under illumination condition for DSSC cells containing untreated IO TiO_2 and Nb_2O_5 -coated IO TiO_2 , for different atomic %.

the Nyquist plot revealed a large semicircle in the frequency range between 1 kHz and 1 Hz. The size of the arc depended on the concentration of I_3^- and on the rate of back-electron transfer at the TiO₂/electrolyte interface. The impedance spectrum was analyzed using an equivalent circuit for the TiO₂/ electrolyte interface in the conductive state. The recombination resistance ($R_{\rm rec}$) was obtained by the curve of the large semicircle, as reported elsewhere.³⁰ In Table 1, the value of $R_{\rm rec}$ decreased from 139.1 Ω for the untreated electrode to 89.5 Ω for the 3.3 wt %-Nb₂O₅ IO TiO₂ electrodes, which was a 36% decrease upon introduction of the Nb₂O₅ coating. This implies that the coating is not forming a barrier layer to reduce the recombination loss. Meanwhile, the chemical capacitance (C_{μ}) was also estimated as listed in Table 1. The chemical capacitance describes the density of states in the bandgap of TiO₂.³¹ the value of C_{μ} for the Nb₂O₅-coated sample was 0.045 F, which was 29% higher than the value of 0.35mF for the untreated sample. Moreover, a lowered degree of dye adsorption was observed on the Nb₂O₅-coated electrodes (0.033 μ mol cm⁻² for 3.3 wt %-Nb₂O₅ IO TiO₂) compared to the amount of dye adsorbed onto the untreated TiO₂ electrode (0.057 μ mol cm⁻²). The number of electrons generated by the adsorbed dye molecules on the Nb₂O₅-coated TiO₂ surface was not higher. Thus, our results imply that the enhancement in the electron injection of TiO₂ electrodes due to the Nb₂O₅ coating improves the J_{SC} value.

The enhancement of the electron injection might be attributed to the shift of conduction band edge of TiO₂. Previously, it has been reported that the acidic property of Nb₂O₅ shifted the TiO₂ flat band energy potential ($E_{\rm fb}$) toward positive values and increased the driving force for electron injection (determined as the difference between $E_{\rm fb}$ and the LUMO state of the dye), thereby enhancing the electron injection efficiency.¹⁸ Here, in Figure 7, we measured the cyclic

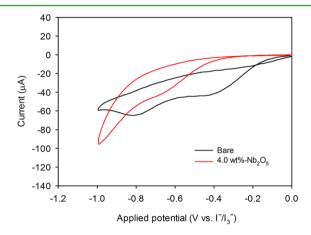


Figure 7. Cyclic voltammetry for the untreated IO $\rm TiO_2$ and 4.0 wt $\%-\rm Nb_2O_5$ IO $\rm TiO_2$ electrode in the $\rm I_3^-/\rm I^-$ electrolyte.

voltammetry curves of the bare and Nb₂O₅-coated TiO₂ electrodes in the obtained in the electrolyte solution of 0.05 M LiI, 0.003 M I₂ under the scanning range of -1 V to 0 (versus I₃⁻/I⁻). The cyclic voltammetry is sensitive to the interfacial electron flow in the electrode/electrolyte interface.^{32,33} The voltammetric curves show the reduction peaks attributed to the charging/discharging at the interface and the peak was shifted positively upon the Nb₂O₅ coating. This result confirms the positive shift of the conduction band edge in Nb₂O₅-coated IO TiO₂ electrodes.

Meanwhile, the $J_{\rm SC}$ value observed for thick (greater than 3.3 wt %) Nb₂O₅ coatings decreased by as much as 14% relative to 3.3 wt %-Nb₂O₅ IO TiO₂ electrode, which decreased η . The DSSCs prepared here using Nb₂O₅-coated IO TiO₂ electrodes displayed enhanced $J_{\rm SC}$ and η values compared to the untreated IO-TiO₂ electrodes. The thicker Nb₂O₅ coating slightly increased the recombination resistance, $R_{\rm rec}$ but the capacitance C_{μ} was decreased. This implies that the thicker Nb₂O₅ coating might not further shift the conduction band but rather impair the electron injection because of the increase in injection resistance itself.

CONCLUSION

We investigated Nb_2O_5 -coated TiO_2 inverse opal electrodes for use in highly efficient DSSCs. The presence of Nb_2O_5 in the

ACS Applied Materials & Interfaces

coating, prepared via the oxidation of a hydrated NbCl₅ precursor, was confirmed by XPS measurements. The uniformity of the Nb₂O₅ coatings was achieved by preparing a fully connected porous IO structure, as confirmed by EDX analysis. The photovoltaic performances of the Nb_2O_5 coating on the TiO₂ inverse opal electrodes showed that I_{SC} increased by up to 60%, from 10.45 to 16.73 mA/cm². The photon-toelectric conversion efficiency was thereby increased by 46%, from 4.95% to 7.23%. The I-V graphs obtained under frontside or back-sided illumination conditions were compared. The Nb_2O_5 coating clearly suppressed the reduction in J_{SC} under back-side illumination. The EIS analysis revealed a large increase in the chemical capacitance, thereby the electron injection efficiency upon introduction of the Nb₂O₅ coating. The maximum efficiency of 7.23% observed here is the highest efficiency yet reported for inverse opal-based electrodes. Our approach demonstrates a simple route to enhancing the J_{SC} and, thereby, the efficiency of DSSCs employing inverse opal electrodes.

ASSOCIATED CONTENT

S Supporting Information

SEM images and transmission spectra. This information is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: junhyuk@sogang.ac.kr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (2011-0030250). The Korea Basic Science Institute is also acknowledged for SEM, TEM and XPS measurements.

REFERENCES

(1) Oregan, B.; Gratzel, M. Nature 1991, 353, 737-740.

(2) Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595–6663.

(3) Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Coord. Chem. Rev. 2004, 248, 1381–1389.

(4) Zhang, Z. H.; Yu, Y. J.; Wang, P. ACS Appl. Mater. Interfaces 2012, 4, 990–996.

(5) Zhuge, F. W.; Qiu, J. J.; Li, X. M.; Gao, X. D.; Gan, X. Y.; Yu, W. D. Adv. Mater. **2011**, 23, 1330–1334.

(6) Zheng, Q.; Kang, H.; Yun, J.; Lee, J.; Park, J. H.; Baik, S. ACS Nano 2011, 5, 5088–5093.

(7) Pan, X. A.; Chen, C. H.; Zhu, K.; Fan, Z. Y. Nanotechnology 2011, 22, 235402.

(8) Sauvage, F.; Chen, D. H.; Comte, P.; Huang, F. Z.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. ACS Nano **2010**, *4*, 4420–4425.

(9) Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M. *Nano Lett.* **2005**, *5*, 1789–1792.

(10) Lee, S. H. A.; Abrams, N. M.; Hoertz, P. G.; Barber, G. D.; Halaoui, L. I.; Mallouk, T. E. J. Phys. Chem. B 2008, 112, 14415–14421.

(11) Kuo, C. Y.; Lu, S. Y. Nanotechnology 2008, 19, 095705.

(12) Tetreault, N.; Arsenault, E.; Heiniger, L. P.; Soheilnia, N.; Brillet, J.; Moehl, T.; Zakeeruddin, S.; Ozin, G. A.; Gratzel, M. *Nano Lett.* **2011**, *11*, 4579–4584.

(13) Guldin, S.; Huttner, S.; Kolle, M.; Welland, M. E.; Muller-Buschbaum, P.; Friend, R. H.; Steiner, U.; Tetreault, N. *Nano Lett.* **2010**, *10*, 2303–2309. (14) Shin, J. H.; Moon, J. H. Langmuir 2011, 27, 6311-6315.

(15) Cho, C. Y.; Moon, J. H. Adv. Mater. 2011, 23, 2971-2975.

(16) Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. *Science* **2011**, *334*, 629–634.

(17) Prasittichai, C.; Hupp, J. T. J. Phys. Chem. Lett. 2010, 1, 1611–1615.

(18) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. **2003**, 125, 475–482.

(19) Barea, E.; Xu, X. Q.; Gonzalez-Pedro, V.; Ripolles-Sanchis, T.; Fabregat-Santiago, F.; Bisquert, J. *Energy Environ. Sci.* **2011**, *4*, 3414–3419.

(20) Ueno, S.; Fujihara, S. Electrochim. Acta 2011, 56, 2906–2913.

(21) Yang, M.; Kim, D.; Jha, H.; Lee, K.; Paul, J.; Schmuki, P. Chem. Commun. 2011, 47, 2032–2034.

(22) Ahn, K. S.; Kang, M. S.; Lee, J. K.; Shin, B. C.; Lee, J. W. Appl. Phys. Lett. 2006, 89, 013103.

(23) Lin, C.; Tsai, F. Y.; Lee, M. H.; Lee, C. H.; Tien, T. C.; Wang, L. P.; Tsai, S. Y. J. Mater. Chem. **2009**, *19*, 2999–3003.

(24) Makinen, V.; Honkala, K.; Hakkinen, H. J. Phys. Chem. C 2011, 115, 9250-9259.

(25) Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D. J. Phys. Chem. B 2006, 110, 22652–22663.

(26) Roh, S. J.; Mane, R. S.; Min, S. K.; Lee, W. J.; Lokhande, C. D.; Han, S. H. *Appl. Phys. Lett.* **2006**, *89*, 253512.

(27) Lu, X. J.; Mou, X. L.; Wu, J. J.; Zhang, D. W.; Zhang, L. L.; Huang, F. Q.; Xu, F. F.; Huang, S. M. *Adv. Funct. Mater.* **2010**, *20*, 509–515.

(28) Kuznetsov, M. V.; Razinkin, A. S.; Shalaeva, E. V. J. Struct. Chem. 2009, 50, 514–521.

(29) Hsiao, P. T.; Liou, Y. J.; Teng, H. S. J. Phys. Chem. C 2011, 115, 15018–15024.

(30) Adachi, M.; Sakamoto, M.; Jiu, J. T.; Ogata, Y.; Isoda, S. J. Phys. Chem. B 2006, 110, 13872–13880.

(31) Barea, E. M.; Zafer, C.; Gultekin, B.; Aydin, B.; Koyuncu, S.; Icli, S.; Santiago, F. F.; Bisquert, J. *J. Phys. Chem. C* **2010**, *114*, 19840–19848.

(32) Kang, S. H.; Kim, J. Y.; Kim, Y.; Kim, H. S.; Sung, Y. E. J. Phys. Chem. C 2007, 111, 9614–9623.

(33) Saruwatari, K.; Sato, H.; Idei, T.; Kameda, J.; Yamagishi, A.; Takagaki, A.; Domen, K. J. Phys. Chem. B 2005, 109, 12410–12416.